Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
4.
Viruses ; 14(4)2022 03 31.
Article in English | MEDLINE | ID: mdl-35458463

ABSTRACT

Subacute sclerosing panencephalitis (SSPE) is a late complication of measles virus infection that occurs in previously healthy children. This disease has no specific cure and is associated with a high degree of disability and mortality. In recent years, there has been an increase in its incidence in relation to a reduction in vaccination adherence, accentuated by the COVID-19 pandemic. In this article, we take stock of the current evidence on SSPE and report our personal clinical experience. We emphasise that, to date, the only effective protection strategy against this disease is vaccination against the measles virus.


Subject(s)
COVID-19 , Measles , Subacute Sclerosing Panencephalitis , COVID-19/prevention & control , Child , Humans , Measles/epidemiology , Measles/prevention & control , Measles virus , Pandemics , Subacute Sclerosing Panencephalitis/epidemiology , Subacute Sclerosing Panencephalitis/etiology , Subacute Sclerosing Panencephalitis/prevention & control , Vaccination/adverse effects
5.
J Pers Med ; 12(1)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35055435

ABSTRACT

The "Spazio Huntington-A Place for Children" program was launched in 2019. The aim was to contact at risk kids within Huntington disease (HD) families, to provide counseling to their parents and to start a prospective follow-up of kids suspicious to manifest pediatric HD (PHD). We met 25 at risk kids in two years, four of whom with PHD and highly expanded (HE) mutations beyond 80 CAG repeats. We rated motor, neuropsychological and behavioral changes in all PHD kids by the Unified HD Rating Scale (UHDRS)-total motor score (TMS) and additional measures of (1) cognitive level (Leiter International Performance Scale), (2) adaptive functioning (Adaptive Behavior Assessment Systems), (3) receptive language (Peabody Picture Vocabulary Test) and (4) behavioral abnormalities (Child Behavior Check List and Children's Yale-Brown Obsessive Compulsive Scale). All PHD kids showed a severe progression of neurological and psychiatric manifestations including motor, cognitive and behavioral changes. The magnetic resonance imaging contributed to confirm the suspicious clinical observation by highlighting very initial striatum abnormalities in PHD. Spazio Huntington is a program to prospectively study PHD, the most atypical face of HD, and may represent the basis to recruit PHD patients in future clinical trials.

6.
J Med Genet ; 59(3): 262-269, 2022 03.
Article in English | MEDLINE | ID: mdl-33397746

ABSTRACT

BACKGROUND: Next-generation sequencing, combined with international pooling of cases, has impressively enhanced the discovery of genes responsible for Mendelian neurodevelopmental disorders, particularly in individuals affected by clinically undiagnosed diseases. To date, biallelic missense variants in ZNF526 gene, encoding a Krüppel-type zinc-finger protein, have been reported in three families with non-syndromic intellectual disability. METHODS: Here, we describe five individuals from four unrelated families with an undiagnosed neurodevelopmental disorder in which we performed exome sequencing, on a combination of trio-based (4 subjects) or single probands (1 subject). RESULTS: We identified five patients from four unrelated families with homozygous ZNF526 variants by whole exome sequencing. Four had variants resulting in truncation of ZNF526; they were affected by severe prenatal and postnatal microcephaly (ranging from -4 SD to -8 SD), profound psychomotor delay, hypertonic-dystonic movements, epilepsy and simplified gyral pattern on MRI. All of them also displayed bilateral progressive cataracts. A fifth patient had a homozygous missense variant and a slightly less severe disorder, with postnatal microcephaly (-2 SD), progressive bilateral cataracts, severe intellectual disability and unremarkable brain MRI.Mutant znf526 zebrafish larvae had notable malformations of the eye and central nervous system, resembling findings seen in the human holoprosencephaly spectrum. CONCLUSION: Our findings support the role of ZNF526 biallelic variants in a complex neurodevelopmental disorder, primarily affecting brain and eyes, resulting in severe microcephaly, simplified gyral pattern, epileptic encephalopathy and bilateral cataracts.


Subject(s)
Cataract , Epilepsy , Intellectual Disability , Microcephaly , Nervous System Malformations , Neurodevelopmental Disorders , Animals , Humans , Cataract/genetics , Epilepsy/genetics , Intellectual Disability/genetics , Microcephaly/genetics , Neurodevelopmental Disorders/genetics , Pedigree , Zebrafish/genetics
7.
J Clin Med ; 10(16)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34441836

ABSTRACT

GNAO1 gene mutations are associated with a neurodevelopmental disorder characterized by developmental delay, epilepsy, and movement disorder. Eye tracking and eye movement analysis are an intriguing method to assess cognitive and language function and, to the best of our knowledge, it has never been tested in a standardized way in GNAO1. GNAO1 children are usually wheelchair-bound and with numerous motor constrains, including dystonic movements and postures, heterotropia, and hypotonia, making the cognitive assessment arduous. These contribute to the burden and disability, with a high level of frustration of caregivers and patients. We have herein demonstrated that, through an eye tracking system, six GNAO1 patients evaluated showed variable degrees of communicative intent through intentionally directed gaze. Moreover, three of these were able to complete a cognitive evaluation, and showed normal fluid intelligence and lexical comprehension. In conclusion, in GNAO1-related disorders, the degree of cognitive development is underestimated; eye tracking technologies may help in overcome these boundaries.

8.
J Clin Med ; 10(12)2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34204464

ABSTRACT

Acute-onset movement disorders (MDs) are an increasingly recognized neurological emergency in both adults and children. The spectrum of possible causes is wide, and diagnostic work-up is challenging. In their acute presentation, MDs may represent the prominent symptom or an important diagnostic clue in a broader constellation of neurological and extraneurological signs. The diagnostic approach relies on the definition of the overall clinical syndrome and on the recognition of the prominent MD phenomenology. The recognition of the underlying disorder is crucial since many causes are treatable. In this review, we summarize common and uncommon causes of acute-onset movement disorders, focusing on clinical presentation and appropriate diagnostic investigations. Both acquired (immune-mediated, infectious, vascular, toxic, metabolic) and genetic disorders causing acute MDs are reviewed, in order to provide a useful clinician's guide to this expanding field of pediatric neurology.

9.
Int J Mol Sci ; 22(9)2021 05 07.
Article in English | MEDLINE | ID: mdl-34067185

ABSTRACT

KCND3 encodes the voltage-gated potassium channel KV4.3 that is highly expressed in the cerebellum, where it regulates dendritic excitability and calcium influx. Loss-of-function KV4.3 mutations have been associated with dominant spinocerebellar ataxia (SCA19/22). By targeted NGS sequencing, we identified two novel KCND3 missense variants of the KV4.3 channel: p.S347W identified in a patient with adult-onset pure cerebellar syndrome and p.W359G detected in a child with congenital nonprogressive ataxia. Neuroimaging showed mild cerebellar atrophy in both patients. We performed a two-electrode voltage-clamp recording of KV4.3 currents in Xenopus oocytes: both the p.G345V (previously reported in a SCA19/22 family) and p.S347W mutants exhibited reduced peak currents by 50%, while no K+ current was detectable for the p.W359G mutant. We assessed the effect of the mutations on channel gating by measuring steady-state voltage-dependent activation and inactivation properties: no significant alterations were detected in p.G345V and p.S347W disease-associated variants, compared to controls. KV4.3 expression studies in HEK293T cells showed 53% (p.G345V), 45% (p.S347W) and 75% (p.W359G) reductions in mutant protein levels compared with the wildtype. The present study broadens the spectrum of the known phenotypes and identifies additional variants for KCND3-related disorders, outlining the importance of SCA gene screening in early-onset and congenital ataxia.


Subject(s)
Ion Channel Gating , Mutation/genetics , Shal Potassium Channels/genetics , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/physiopathology , Amino Acid Sequence , Animals , Child , Female , HEK293 Cells , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Proteostasis , Spinocerebellar Ataxias/diagnostic imaging , Xenopus laevis
10.
Parkinsonism Relat Disord ; 88: 24-27, 2021 07.
Article in English | MEDLINE | ID: mdl-34091414

ABSTRACT

BACKGROUND: Although NKX 2.1 related chorea has been considered benign due to the favourable course of motor phenotype during life, the neurological condition is not limited to chorea, including non-motor symptoms in the developmental, cognitive and psychiatric domain. Aim of our study was to test working memory, attention and planning abilities of a cohort of NKX2.1 choreic patients compared to healthy controls. METHODS: patients and healthy controls were assessed for working memory (Visual Digit Span test), response inhibition and sustained attention (Cued Go/No-Go test), and spatial problem-solving and planning task (Tower of London test). For experimental protocol, we used a computer based tool for neuropsychological experiments, Inquisit 5.0 software (Millisecond Software®). Non-parametric tests were performed for statistical analysis. RESULTS: six patients and fifteen healthy paediatric controls were recruited. In the Digit Span test, both in forward and backward recall, patients showed statistically significant lower scores than controls. In the Cued Go/No-Go test as well as in the Tower of London, NKX 2.1 patients showed similar scores in the error rate and total score respectively, whereas in both tests they appeared to be slower than controls suggesting a poor performance in the execution of the tests. CONCLUSIONS: our findings demonstrate that patients with NKX2.1-related chorea show a selective impairment in working memory with increased latencies in both planning and attention. A developmental alteration of the cholinergic neurotransmission in the basal forebrain and the disruption of striatal networks could explain, at least in part, this neuropsychological profile.


Subject(s)
Attention/physiology , Chorea/genetics , Chorea/physiopathology , Cognitive Dysfunction/physiopathology , Executive Function/physiology , Memory, Short-Term/physiology , Thyroid Nuclear Factor 1/genetics , Child , Chorea/complications , Cognitive Dysfunction/etiology , Humans
11.
Front Neurol ; 11: 552701, 2020.
Article in English | MEDLINE | ID: mdl-33192986

ABSTRACT

Tourette syndrome (TS) is a neurodevelopmental disorder characterized by motor and vocal tics. Co-occurrence of attention-deficit/hyperactivity disorder (ADHD) or obsessive-compulsive disorder (OCD) is very frequent in the pediatric population as well as the presence of an impairment of the executive functions. The aim of our study was to investigate motor timing, that is, the temporal organization of motor behavior, in a pediatric population of Tourette patients. Thirty-seven Tourette patients (divided in 22 "pure" Tourette patients and 15 with ADHD) were compared with 22 healthy age- and gender-matched subjects. All subjects underwent a neuropsychiatric screening and were tested for their planning and decision-making abilities by using a standardized test, such as Tower of London (ToL). Two experimental paradigms were adopted: finger-tapping test (FTT), a free motor tapping task, and synchronization-continuation task. An accuracy index was calculated as measure of ability of synchronization. We found that "pure" TS as well as TS+ADHD showed lower scores in the FTT for the dominant and non-dominant hands than controls. Moreover, in the synchronization and continuation test, we observed an overall lack of accuracy in both TS groups in the continuation phase for 2,000 ms (supra-second interval), interestingly, with opposite direction of accuracy index. Thus, "pure" TS patients were classified as "behind the beat," whereas, TS+ADHD as "ahead of the beat." The performance in the finger tapping was inversely correlated to ToL total scores and execution time, whereas we did not find any correlation with the accuracy index of the synchronization and continuation test. In conclusion, here, we explored motor timing ability in a childhood cohort of Tourette patients, confirming that patients exhibit an impaired temporal control of motor behavior and these findings may be explained by the common underlying neurobiology of TS and motor timing.

12.
Parkinsonism Relat Disord ; 79: 100-104, 2020 10.
Article in English | MEDLINE | ID: mdl-32911246

ABSTRACT

ADAR1 variants are associated to rare and heterogenous neurological conditions, including Aicardi-Goutières syndrome type 6, bilateral striatal necrosis, and dyschromatosis symmetrica hereditaria. Movement disorders (MDs) commonly occur in ADAR1-related diseases although a complete overview on the phenomenology has not been provided yet. Here, a cohort of 57 patients with ADAR1-related diseases, including 3 unpublished patients and 54 previously reported cases, was reviewed. Data on demographics, clinical features of MDs, genetics and biomarkers were collected and descriptive statistics, group analysis for genotype and logistic regression were run. Manifestations of MD characterized the onset of ADAR1-related disease in 60% of patients. Specifically, dystonia occurred in 39% of cases, even as severe status dystonicus, while prevalence of other MDs was lower. Patients often presented brain lesions (>90%) and progressive disease course (43%), fatal in some cases. Clinical presentation and outcome differed among patients with distinct genotype. This review shows that phenomenology of MDs in ADAR1-related diseases is wide and heterogeneous, although a severe motor syndrome (often characterized by dystonia) secondary to brain lesions represents the most common manifestation. Waiting for future development of disease-modifying treatments, an appropriate symptomatic intervention is crucial for ADAR1 patients. Accordingly, a deeper knowledge of phenomenology is fundamental.


Subject(s)
Adenosine Deaminase/genetics , Movement Disorders/genetics , Movement Disorders/pathology , Movement Disorders/physiopathology , RNA-Binding Proteins/genetics , Humans
14.
Int J Mol Sci ; 21(10)2020 May 20.
Article in English | MEDLINE | ID: mdl-32443735

ABSTRACT

Paroxysmal movement disorders (PMDs) are rare neurological diseases typically manifesting with intermittent attacks of abnormal involuntary movements. Two main categories of PMDs are recognized based on the phenomenology: Paroxysmal dyskinesias (PxDs) are characterized by transient episodes hyperkinetic movement disorders, while attacks of cerebellar dysfunction are the hallmark of episodic ataxias (EAs). From an etiological point of view, both primary (genetic) and secondary (acquired) causes of PMDs are known. Recognition and diagnosis of PMDs is based on personal and familial medical history, physical examination, detailed reconstruction of ictal phenomenology, neuroimaging, and genetic analysis. Neurophysiological or laboratory tests are reserved for selected cases. Genetic knowledge of PMDs has been largely incremented by the advent of next generation sequencing (NGS) methodologies. The wide number of genes involved in the pathogenesis of PMDs reflects a high complexity of molecular bases of neurotransmission in cerebellar and basal ganglia circuits. In consideration of the broad genetic and phenotypic heterogeneity, a NGS approach by targeted panel for movement disorders, clinical or whole exome sequencing should be preferred, whenever possible, to a single gene approach, in order to increase diagnostic rate. This review is focused on clinical and genetic features of PMDs with the aim to (1) help clinicians to recognize, diagnose and treat patients with PMDs as well as to (2) provide an overview of genes and molecular mechanisms underlying these intriguing neurogenetic disorders.


Subject(s)
Ataxia/genetics , Chorea/genetics , Phenotype , Ataxia/classification , Ataxia/diagnosis , Chorea/classification , Chorea/diagnosis , Genetic Testing/methods , Humans , Mutation
15.
Appl Clin Genet ; 13: 71-81, 2020.
Article in English | MEDLINE | ID: mdl-32280259

ABSTRACT

Alternating hemiplegia of childhood (AHC) is a rare neurological disorder affecting children with an onset before 18 months. Diagnostic clues include transient episodes of hemiplegia alternating in the laterality or quadriparesis, nystagmus and other paroxysmal attacks as tonic and dystonic spells. Epilepsy is also a common feature. In the past, a great effort has been done to understand the genetic basis of the disease leading to the discovery of mutations in the ATP1A3 gene encoding for the alpha3 subunit of Na+/K+ATPase, a protein already related to another disease named Rapid Onset Dystonia Parkinsonism (RDP). ATP1A3 mutations account for more than 70% of cases of AHC. In particular, three hotspot mutations account for about 60% of all cases, and these data have been confirmed in large population studies. Specifically, the p.Asp801Asn variant has been found to cause 30-43% of all cases, p.Glu815Lys is responsible for 16-35% of cases and p.Gly947Arg accounts for 8-15%. These three mutations are associated with different clinical phenotype in terms of symptoms, severity and prognosis. In vitro and in vivo models reveal that a crucial role of Na+/K+ATPase pump activity emerges in maintaining a correct membrane potential, survival and homeostasis of neurons. Herein, we attempt to summarize all clinical, genetic and molecular aspects of AHC considering ATP1A3 as its primary disease-causing determinant.

16.
Dev Med Child Neurol ; 62(6): 742-749, 2020 06.
Article in English | MEDLINE | ID: mdl-31837011

ABSTRACT

AIM: To critically analyse the management of status dystonicus and prestatus dystonicus in children and adolescents, in order to examine clinical features, acute management, and risk of relapse in a paediatric cohort. METHOD: Clinical, demographic, and therapeutic features were analysed according to disease severity. Risk of subsequent relapse was estimated through Kaplan-Meier curves. RESULTS: Thirty-four patients (eight females, 26 males) experiencing 63 episodes of acute dystonia exacerbations at a tertiary referral Italian hospital were identified. Mean age at status dystonicus presentation was 9 years 11 months (11y at inclusion in the study). Onset of dystonia dated back to infancy in most cases. Fourteen patients experienced two or more episodes. Infections were the most common trigger (48%). Benzodiazepines were the most commonly used drugs for acute management. Stereotactic pallidotomy was performed in six cases during status dystonicus, and in two additional patients it was electively performed after medical management. The probability of survival free from status dystonicus relapses was 78% after 4 months and 61% after 27 months. INTERPRETATION: Dystonia exacerbations are potentially life-threating emergencies, with a considerable risk of relapse. Nevertheless, no obvious factors for relapse risk stratification exist. Pallidotomy is a feasible option in medical refractory status dystonicus for patients with limited deep brain stimulation applicability, but the risk of recurrence is elevated. WHAT THIS PAPER ADDS: Acute exacerbations may affect up to 10% of children with dystonia. Infections are the most common precipitant factor. In about 30% of the cases, intensive care unit admission is needed. Subsequent relapses are common, reaching 25% risk at 1 year. Pallidotomy can be considered in medical-refractory cases with no deep brain stimulation applicability.


Subject(s)
Dystonic Disorders/diagnosis , Dystonic Disorders/therapy , Adolescent , Age Factors , Benzodiazepines/therapeutic use , Child , Cohort Studies , Dystonic Disorders/complications , Female , Humans , Male , Pallidotomy , Recurrence , Treatment Outcome
17.
Front Genet ; 10: 1026, 2019.
Article in English | MEDLINE | ID: mdl-31737037

ABSTRACT

In recent years, genetic techniques of diagnosis have shown rapid development, resulting in a modified clinical approach to many diseases, including neurological disorders. Movement disorders, in particular those arising in childhood, pose a diagnostic challenge. First, from a purely phenomenological point of view, the correct clinical classification of signs and symptoms may be difficult and require expert evaluation. This is because the clinical picture is often a mixture of hyperkinetic and hypokinetic disorders, and within hyperkinetic movement disorders, combined phenotypes are not unusual. Second, although several genes that cause movement disorders in children are now well-known, many of them have only been described in adult populations or discovered in patients after many years of disease. Furthermore, diseases that alter their mechanisms from childhood to adulthood are still little known, and many phenotypes in children are the result of a disruption of normal neurodevelopment. High-throughput gene screening addresses these difficulties and has modified the approach to genetic diagnosis. In the exome-sequencing era, customized genetic panels now offer the ability to perform fast and low-cost screening of the genes commonly involved in the pathogenesis of the disease. Here, we describe a 3-year study using a customized gene panel for pediatric-onset movement disorders in a selected cohort of children and adolescents. We report a satisfying diagnostic yield, further confirming the usefulness of gene panel analysis.

19.
Clin Genet ; 96(2): 169-175, 2019 08.
Article in English | MEDLINE | ID: mdl-31066025

ABSTRACT

Heterozygous missense variants in the SPTBN2 gene, encoding the non-erythrocytic beta spectrin 2 subunit (beta-III spectrin), have been identified in autosomal dominant spinocerebellar ataxia type 5 (SCA5), a rare adult-onset neurodegenerative disorder characterized by progressive cerebellar ataxia, whereas homozygous loss of function variants in SPTBN2 have been associated with early onset cerebellar ataxia and global developmental delay (SCAR14). Recently, heterozygous SPTBN2 missense variants have been identified in a few patients with an early-onset ataxic phenotype. We report five patients with non-progressive congenital ataxia and psychomotor delay, 4/5 harboring novel heterozygous missense variants in SPTBN2 and one patient with compound heterozygous SPTBN2 variants. With an overall prevalence of 5% in our cohort of unrelated patients screened by targeted next-generation sequencing (NGS) for congenital or early-onset cerebellar ataxia, this study indicates that both dominant and recessive mutations of SPTBN2 together with CACNA1A and ITPR1, are a frequent cause of early-onset/congenital non-progressive ataxia and that their screening should be implemented in this subgroup of disorders.


Subject(s)
Cerebellar Ataxia/diagnosis , Cerebellar Ataxia/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Heterozygote , Mutation, Missense , Spectrin/genetics , Adolescent , Alleles , Amino Acid Sequence , Child , Child, Preschool , Computational Biology/methods , High-Throughput Nucleotide Sequencing , Humans , Infant , Models, Molecular , Pedigree , Phenotype , Spectrin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...